当前位置:首页 > 实用范文

初中七年级上册数学课件多篇

时间:2024-11-18 16:11:08
初中七年级上册数学课件多篇

[引言]初中七年级上册数学课件多篇为网友投稿推荐,但愿对你的学习工作带来帮助。

初中七年级上册数学课件 篇一

教学目标

1、使学生了解正数与负数是从实际需要中产生的;

2、使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;

3、在负数概念的形成过程中,培养学生的观察、归纳与概括的能力

教学重难点

教学重点:负数的引入和意义

教学难点:负数的意义,相反意义的量

教学过程

(一)、复习回顾

大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?

学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

为了表示一个人、两只手、……,我们用到整数1,2,……

为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4.87、……

为了表示“没有人”、“没有羊”、……我们要用到0.

但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。

(二)、生活再现

观察章前图再讨论问题:

1、在图中你发现你还不很熟悉的数字了吗?

2、凭你的经验,你能解释这些陌生数字的意义吗?

3、请体验陌生的数字的用处,再思考一下生活中哪些地方还见过这些陌生的数字。

学生交流后举例,如:

1、天气预报2005年3月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

2、某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5,(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?

(三)、引入概念

这里出现了一种新数:

-3 表示零下3摄氏度,

-0.5 表示小于设计尺寸0.5mm

而:3 表示零上3摄氏度,

+0.5 表示大于设计尺寸0.5mm

我们把以前学过的数大于零叫做正数。

有时在正数前面也加上“+”(正)号。 如+0.5、+3、+1/2……“+”号可以省略。

我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。如-3、-0.5、-2/3……

一个数前面的“+”、“-”号叫做它的符号。 “-”号读着“负”,如:“-5”读着“负5”;“+”号读着“正”,如:“+3”读着“正3”。“+”号可以省略。

练习

1.读下列各数,指出下列各数中的正数、负数:

+7、-9、4/3、-4.5、998、

解:+7、4/3、988是正数,-9、-4.5 是负数

(四)、相反意义的量

例:某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。

它们是具有相反意义的两个量。

现实生活中,像这样的相反意义的量还有很多。

例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的。

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量筒明地表示出来了。

(1)相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。如前进8m与前进5m,上升与下降不是相反意义的量;因为前者意义相同,后者缺少数量。

(2)与一个量成相反意义的量不止一个,如与上升2m成相反意义的量就很多,如:下降1m,下降0.2m,……

在同一问题中,用正、负数表示具有相反意义的量。收入300元和支出200元,零上6℃和零下4℃,向东30米和向西50米等等,如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然。

对于两个具有相反意义的量,把哪一种意义规定为正,带有任意性,不过习惯上把向东、上升、盈利、运进、增加、收入等规定为正,把它们的相反量规定为负的。

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

(五)、“0”的意义

思考:一个数不是正数就是负数,对吗?

0既不是正数也不是负数。0是正负数的分界。

例题:

1、观察下图,试着说明它们的海拔高度。

海平面的高度如何表示?

2、解释图中的正数和负数的含义

它们以什么为基准?0℃

总结:“0”的意义

1.空罐中的金币数量;

2.温度中的0℃;

3.海平面的高度;

4.标准水位;

5.身高比较的基准;

6.正数和负数的界点;

等等……

引入正负数后,0不再简简单单的只表示没有。

它具有丰富的意义,是正负数的基准。

(六)、课堂练习

1、北京一月份的日平均气温大约是零下3℃,用负数表示这个温度

答:-3℃

2、在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?

答:海下面以下392米

3、在下列各数中,哪些是正数?哪些是负数?

-16,0,0.04, 25,8,-3,6,-4,9651,-0,1.

答:正数:0.04、25、8、6、9651、1

负数:-16、-3、

4、如果-50元表示支出50元,那么+200元表示什么?

答:收入200元

5、河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?

答:+0.1米

6、如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?

答:-3毫米

7、一物体可以左右移动,设向右为正,问:

(1)向左移动12米应记作什么?(2)“记作8米”表明什么?

答:(1)-12米……此处隐藏14753个字……个量。

现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的。 “运进”和“运出”,其意义是相反的。

存折上,银行是怎么区分存款和取款的?

同学们能举例子吗?

学生回答后,教师提出:怎样区别相反意义的量才好呢?

待学生思考后,请学生回答、评议、补充。

教师小结:同学们成了发明家。甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的。

现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了。

让学生用同样的方法表示出前面例子中具有相反意义的量:

高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

教师讲解:一对意义相反的量,一个用正数表示,另一个用负数表示。

强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。

把正数和零称为非负数

故事:虚伪的零下

在日常生活和生产中大量存在着具有相反意义的量,引入负数完全是实际的需要。

历史上,负数曾经到非议,直到16世纪,欧洲大多数的数学家都还不承认负数,他们觉得“0就是什么也没有”,还有什么东西能够比“什么也没有”还小呢?德国数学家史蒂芬说:“负数是虚伪的零下”,仅是些记号而已。法国数学家帕斯卡则认为,从0减去4是胡说八道。

最早发现负数的是我们中国人,我国的“孟子”一书中就有“邻国之民不加少,寡人之民不加多”其中“加少”就是减少,即加上了负数的意思。秦汉时的古代算经“九章算术”的方程里明确提出:以卖为正,则买为负;余钱为正,亏钱为负。三国时魏国人刘徽在“九章算术”的注解中,则更进一步概括了正、负数的意义,他明确提出,两种得失相反的数,分别叫做正数和负数。负数概念的产生,是世界科学史上的一项重大的发现,也是我国人民对数学发展作出的一项重大贡献,我们应该引以自豪!另外,印度数学家在公元625年(比我国迟几百年),婆罗摩捷多已经提出了负数的概念。他用“财产”表示正数,用“欠债表示负数,并用它们解释正负数的加减法运算。

0只表示没有吗?

1.空罐中的金币数量;

2.温度中的0℃;

3.海平面的高度;

4.标准水位;

5.身高比较的基准;

6.正数和负数的界点;

……0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有。

2、给出新的整数、分数概念

引进负数后,数的范围扩大了。把正整数、负整数和零统称为整数,正分数、负分数统称为分数。

3、给出有理数概念

整数和分数统称为有理数。

4、有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。有理数还有没有其他的分类方法?

待学生思考后,请学生回答、评议、补充。

课后小结

教师小结:按有理数的符号分为三类:正有理数、负有理数和零。在有理数范围内,正数和零统称为非负数。向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。

初中七年级上册数学课件 篇九

教学目的:

(一)知识点目标:

1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的

符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:

通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好?

内容:老师说出指令:

向前两步,向后两步;

向前一步,向后三步;

向前两步,向后一步;

向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。

2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的1313本地某银行的存折,说出你知道的信息。

巩固提高:练习:课本P5练习

课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题1.1的第1、2、4、5题。

活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思:

你也可以在搜索更多本站小编为你整理的其他初中七年级上册数学课件多篇范文。

《初中七年级上册数学课件多篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式