当前位置:首页 > 教学资源

“方程的根与函数的零点”教学反思

时间:2025-01-25 08:53:17
“方程的根与函数的零点”教学反思

“方程的根与函数的零点”教学反思

方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题。最近,在浙江绍兴听了这一内容的两堂新授课,使用教材都是人民教育出版社《普通高中课程标准试验教科书·数学1(必修)》,课后又与部分学生进行了交流。总的来说,教学效果都不甚理想,暴露出了一些共同的问题,看来具有一定的代表性。下面就两堂课共同存在的问题,谈一点看法。

一、首先要让学生认识到学习函数的零点的必要性

教材是利用一元二次方程的例子来引入函数的零点。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数的零点,再来理解其他复杂的函数的零点就会容易一些。但在教学时,就不能照本宣科。

这两堂课的教学都和教材一样,也是利用一个一元二次方程来引入,围绕怎样判断所给方程是否有实根来提出问题。并且,两位教师都利用了教材中的方程提出了下列问题:

方程x2-2x-3=0是否有实根?你是怎样判断的?

结果,学生的反应都很平淡,大多数人对这个问题都不感兴趣。课后学生认为,大家对如何解一元二次方程早就熟练了,老师没必要再问那么简单的问题了。由此看来,这堂课一开始就应该让学生认识到学习函数的零点的必要性。教师所选择的例子,最好是学生用已学方法不能求解的方程,这样才能激发学生的学习积极性,并让其认识到学习函数的零点的必要性。例如,可以把教材后面的例子先提出来,让学生思考:

方程lnx+2x-6=0是否有实根?为什么?

在学生对上述问题一筹莫展时,再回到一元二次方程上,引导学生利用函数的图象和性质来研究方程的根。这堂课的头开好了,整堂课就活了。

二、一元二次方程根的存在是否由其判别式决定

当教师问到一元二次方程x2-2x-3=0是否有实根时,两个班的学生很快就用根的判别式作出了判断,没有一位学生用方程相应的函数图象进行分析。于是,教师又引导学生作出一元二次方程相应的函数的图象,并建立方程的根与函数图象和x轴交点的联系。值得注意的是,在上述活动中,学生认为,因为一元二次方程根的判别式的大小有三种情况,所以一元二次方程相应的函数图象和x轴的交点就有三种情况。教师不仅对此默认,还在研究了一元二次方程与其函数图象的关系后总结到,虽然我们可以用判别式来判断一元二次方程根的存在,但对于没有判别式的其他方程就可以根据相应的函数图象来判断了。

看来,师生们对一元二次方程根存在的本质原因都不清楚,都误以为是其判别式的大小。如果通过建立一元二次方程与其相应函数图象的关系,没有揭露出方程根存在的本质原因是相应函数的零点的存在,那么就会导致学生对引入函数零点的必要性缺乏深刻的认识,以为结合函数图象并利用f(a)?f(b)的值与0的关系判断方程根的存在只是其中的一种方法或技巧,而认识不到其一般性和本质性。所以,教学在研究一元二次方程与其相应函数图象的关系时,关键要以函数图象为纽带,建立一元二次方程的根与相应函数零点之间的关系,让学生理解方程根存在的本质以及判断方程根存在的一般方法。这样,才能将所得到的判断方程根存在的方法推广到一般情况,并使学生对方程根存在的认识不仅仅停留在判别式或函数图象上。

三、根据图象能否判断函数是否有零点以及零点的个数

尽管两堂课教师都谈到,要判断函数f(x)在(a,b)内是否有零点(教材对于函数f(x)在(a,b)内有零点,只研究函数f(x)的图象穿过x轴的情况),应该先观察函数f(x)的图象在(a,b)内是否与x轴有交点,再证明是否有f(a)?f(b)<0。但是,教学却没有对证明的必要性展开讨论。结果,从课后了解到,学生都以为只要观察到图象与x轴是否有交点,就可以判断函数f(x)在(a,b)内是否有零点,至于证明只是数学上的严格要求而已。同样,两堂课在研究函数f(x)在(a,b)内有几个零点时,教师也是这样告诉学生,应该先观察函数f(x)的图象在(a,b)内有几个交点,再进行证明,依然没有说明证明的必要性。所以,在课后向学生提出如何判断函数f(x)在(a,b)内有几个零点时,就有学生认为,只需看函数f(x)的图象在(a,b)内有几个交点即可。

看来,教师有必要引导学生认识证明的必要性。例如,我们可以作出一些特殊函数在不同区间范围的图象,让学生通过观察对比得到认识。

《“方程的根与函数的零点”教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式